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Abstract

In our research, we conduct simulations of multicar vertical transportation systems,
systematically comparing their policies to identify the most optimal strategy. We

implemented policies also used in disk scheduling, including SCAN, LOOK, FCFS and
SSTF. Furthermore, we present our proprietary parametrized policy (PWDP) additionally

improved by standard optimisation techniques. Through comprehensive analysis of
different metrics, we found the more simple approaches, such as SCAN or LOOK, to be

performant. Moreover, PWDP performed overall better than the other policies. However,
we concluded that further optimisation of parameters not to improve the performance
drastically either, but with a clear trend, indicating the importance of parameters.
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1 Introduction
An efficient elevator policy is vital to customer satisfaction of an elevator system. Not only
does a good policy improve overall waiting times, but it also decreases time spent in and
waiting for the elevator, thus allowing to allocate more time for other pursuits and activities.

That’s one of the reasons we set out to find the best policy by running agent-based sim-
ulations. We modelled realistic scenarios and compared the performance of different metrics.
Mainly comparing average waiting time (AWT), the average time until a passenger enters the
elevator, and average time to destination (ATTD), which is the average total time it takes for
the passenger to arrive at its destination. In addition, we measure the average crowdedness
(ACE), more precisely the average amount of people per elevator.
We will in closer detail compare SCAN, LOOK, FCFS and SSTF. These policies are based
on algorithms also used in disk scheduling, a field of science dedicating itself to finding an
algorithm which minimizes disk arm movement while maximising data flow. The two subjects
appear to share similarities, leading to the interchangeability of policies in certain instances.
(Chen et al., 2021; Celis et al., 2014; Wang and Jiang, 2021)
Additionally, we propose our own algorithm called PWDP, which uses parameters to determine
the best floor to move to. While also providing an attempt at improving these parameters
using a random search algorithm.
Lastly, we implemented a visual representation and a plotter, which displays the simulation
in real-time. This helps to verify the correctness of the algorithms and understand how the
final analysis correlates with the actual situation in the simulation. These parts will not be
covered in this report. However, in appendix A.1 readers can check out our project in item 1
and our extensive documentation of the whole project in item 2.

2 Model
2.1 Overview

2.1.1 Introduction

In this section, we will outline how our project is structured and more generally demonstrate
the functionality of our simulation. Additionally, we will detail the constants we defined for
our analysis.

2.1.2 Simulation

Everything concerning the simulation is stored inside the simulation class. It’s being initialised
from the main file alongside our visualisation class and live-plotting class. Alternatively, we
initialise another instance of the simulation class when plotting from within the plotter class.
The simulation contains most crucially, a building which is responsible for running the eleva-
tors and spawning passengers. Additionally, the simulation contains some delegate classes and
a simulation statistics class tasked with gathering diverse data. The delegates will be called
if any important events occur in the building, whilst the simulation-statistics class monitors
these calls using listeners on the delegate classes.
Another essential part of the simulation is the time variable since our simulation is based on
a step-by-step basis. The time variable defines at which timepoint in seconds, we currently
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are. One second refers to one timestep. A simulation can be started by calling run() on the
simulation object. As parameters, the runtime of the simulation must be specified either in
seconds, minutes, hours, days or a combination of these. Once the simulation has started, it
will iteratively call step() on the building and update the time variable until the end of the
simulation is reached.

2.1.3 Building

The building incorporates classes for floors, elevators and a distribution. Floors are initialized
on creation of the building. The only factor in this role is the floor amount. It’s one of the
constants we set for our analysis since we want to be able to compare results across different
scenarios. If the floor amount would differ, it would lead us to no decisive conclusion about
the strengths of different policies. That’s why we keep our amount of floors constant at 10.
Similarly for the elevators, we decided to have a constant amount of two elevators. They will
be initialized beforehand and passed as parameters to the building via the simulation. This is
to simplify the choice of which policy the elevator should use. On initialisation, each elevator
needs its own policy as an argument. This is because each elevator should be able to keep a
running count of all the metrics it uses for decision-making. Lastly, the elevator also needs
capacity as a parameter. According to various sources, the weight limit of a standard elevator
ranges from 454 up to 2’722 kg. With elevators of low-rise buildings ranging from 907 to
1’134 kg. Thus by considering one person around 75 kg and a low- to mid-rise building, we
arrive at a capacity of around 15 people. This is also the capacity we used for our simulation.
(Bianco, 2022; TKElevator, 2022; Brown, 2023; Elevator Wiki, 2023)
This leads us to the only dynamic component, apart from the policies in the elevators, the
distribution. Its purpose is to emulate realistic scenarios in buildings. One provides a time
and it will return a list of passengers which should spawn at this time. For each passenger,
we get additional information, about where it should spawn and which floor its target will be.
This will be looked at in more detail, in section 2.1.5 and 2.2.

2.1.4 Execution Flow

The execution flow (see fig. 2.1) works as previously explained on a step-by-step basis. More
precisely once the run() function was called, we iteratively called the step() function on
the building, which will again trigger the step() functions of the elevators one-by-one. This
is an important decision to make since we could also have opted to call all elevators at the
same time while giving them only the common previous state. This however would complicate
things, due to the elevators not being able to know, if a passenger already entered another
elevator since the previous state.
In each step the building first calls get_passengers_to_spawn(), which returns a list of
passengers with corresponding spawn and target floor. Consequently, these passengers will
be spawned on the floor using the spawn_passenger() function. Lastly, the elevator step()
function will be called, as stated before, on a one-by-one basis. Each elevator will then
call its own policy and get a decision. If the elevator previously decided to open the doors,
remove_passenger() will be called.

2.1.5 Distribution

Before moving on to the scenarios, it’s important to understand how they work. Upon ini-
tialising a distribution one has to supply, as part of the parameters, a list of tuples of a time
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Figure 2.1: Execution Flow of Simulation

and a FloorDistribution object. These FloorDistribution objects take a list of weights as
arguments, whereas each weight represents how frequently the floor of the same index should
be chosen. This list should of course have the same length as the amount of floors in the
building. So in other words, one defines the importance of each floor at some given time
point. Additionally, one has to specify a passenger distribution of class TimeDistribution,
which takes as arguments a list of tuples of time and amount of people which should spawn
at the corresponding time.
After initialising, the distribution will precalculate all interpolated values between the defined
times to improve performance. In the end, one can simply call the function get_passengers_to_spawn()
to retrieve the locations of where passengers should spawn and which target they will persue.

2.2 Scenarios

2.2.1 Shopping Mall

The shopping mall scenario is the most simple scenario. The chance of a passenger spawning
on a certain floor is equal for every floor. Thus the only thing that varies is the amount of
people which spawn over time.
More notably, we try to emulate a shopping mall which opens at 8 a.m., peaks at lunchtime
and closes again at midnight. This can be seen more clearly in Fig. 2.2a, which displays the
passenger distribution, thus as described in section 2.1.5 the number of people spawning at a
certain time.

2.2.2 Residential Building

The residential building has more complexity, the weights now differ per floor. Additionally,
the spawn and target distribution are now also distinct.
This scenario should reflect the typical use of such a residential building. More precisely we
expect people to leave the building for work at 6 a.m. This can be seen in fig 2.2b, where
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more people, relatively to other floors, will spawn on floors 1 to 9. On the other hand, floor
0 will be chosen mostly as the target floor (see fig. 2.2c) to exit the building. An influx of
people arriving at floor 0 and going towards the other floors, can again be seen at around
12:00. This should represent the lunch break, as people are coming back from work to eat.
Then at 13:00, most people will start leaving again. Finally, peaking at 19:00 most people
will return from work. It can also be seen, that similar to the shopping mall, there is also
some activity through the night.

2.2.3 Rooftop Bar

Lastly, we have the rooftop bar scenario. The idea of this scenario is to test the policy’s
capabilities to handle a large number of people arriving at one floor and having mostly one
floor as a target, the rooftop bar (or vice-versa).
So as one can see in Fig. 2.2d most people start spawning at 10 o’clock, peaking at 20:00.
Similarly, it can be seen in Fig. 2.2e that these people will mostly go towards floor 9, our
rooftop bar. At 22:00, supposedly when the rooftop bar closes, the situation flips and most
people will spawn on the top floor and head towards the exit at the bottom floor. On random
occasions, some people also seem to be heading towards the middle floors 1-8.

f

2.3 Policies

2.3.1 Introduction

The actions of an elevator are decided by the policy class. Depending on the situation, the
policy can choose one of five actions:

• Up: This signals the elevator that it should move up.

• Down: Indicates to the elevator that it should move down.

• Wait: Signals the elevator that it is currently waiting. Thus no passenger can enter.

• WaitOpen: Tells the elevator that it is currently waiting on a floor, with no advertised
direction. Then, any passenger, regardless of their target floor, can enter the elevator.

• WaitUp: Indicates to the elevator that it is waiting while the advertised direction is up.
Thus, any passenger headed in the same direction can enter.

• WaitDown: Indicates to the elevator that it is waiting while the advertised direction is
down. Thus, any passenger headed in the same direction can enter.

The decision is taken depending on various factors, which will presented in the following
paragraphs.

2.3.2 SCAN Policy

The SCAN Policy fully traverses the whole building until it reaches the highest or lowest floor.
In which case the policy decides the change the direction from up to down or vice versa. It
only stops when a passenger wants to exit the elevator on the current floor, or a passenger
on the floor is also headed in the same direction. In those cases, the policy indicates to the
elevator with WaitUp or WaitDown respectively, that passengers are allowed to enter or leave.
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2.3.3 LOOK Policy

The LOOK Policy uses a similar mechanism as the SCAN Policy but can decide to change
directions, without having to visit the highest or lowest floor. (Wang and Jiang, 2021) As
before, the policy respects the movement of the elevator. Thus the algorithm will return up
or down respectively, until a passenger wants to exit the elevator on the current floor, or a
passenger on the floor is also headed in the same direction. In those cases, the policy indicates
to the elevator with WaitUp or WaitDown respectively, that passengers are allowed to enter
or leave. The policy now decides to switch from moving up to down, when the elevator has
reached the topmost request. Giving the chance to not unnecessarily visit the highest floor.
Similarly, when the elevator is currently moving downwards and the lowest request is reached,
it decides to change direction to up, if there are still requests.

2.3.4 FCFS Policy

The first-come-first-serve (FCFS) policy, addresses the request within the elevator in the
order they were raised. It will go directly to the targeted floor by whichever passenger turn
it currently is, by returning the according direction up or down. When the desired floor is
reached, it signals with WaitUp or WaitDown, if there are still requests in the queue, otherwise
it will signal WaitOpen. This procedure will be repeated until the elevator is empty. In that
case, the policy decides to head directly to the request, which is closest to the current floor of
the elevator. The whole algorithm follows the idea of the traditional FCFS algorithm (Javed
and Khan, 2000), only deviating in the scenario when the elevator is empty.

2.3.5 SSTF Policy

The shortest-seek-time-first works similarly to the FCFS policy. It addresses the request
within the elevator in the order of increasing distance. The elevator will always go to the
floor, that is the closest to the current floor and has a request inbound. (Javed and Khan,
2000) Before arriving at the desired floor, it will evaluate the next target and indicate the
direction with WaitUp or WaitDown respectively. Thus, potential passengers heading in the
same direction can enter the elevator. This procedure will be done until the elevator is empty.
In this case, the policy decides to head directly to the request, which is closest to the current
floor of the elevator.

2.3.6 PWDP Policy

The parameterized weighted decision policy (PWDP Policy) is our own attempt to tackle the
uncovered flaws of the previous policies (for more, see section 4).
When an elevator needs to make its next decision, it calculates a score for each floor in the
building. The floor with the maximal reward will then be set as the next target to travel to.
For each floor i ∈ {0, . . . ,#floors − 1},

Score[i] =
s1 + s2 + s3 + s4
max{1, s5 + s6}

.

The score function consists of multiple components s1, ..., s6. Every part addresses a different
aspect to optimize for. They all also possess a parameterized weight to change the relative
impact the parameter has towards the final score.

s1 = flButtonW · flButtonPressed[i]



8

Component s1 is a constant mask, on which floors passengers are waiting for an elevator. It
should encourage elevators to move towards waiting passengers.

s2 = flButtonW · flButtonTimeW · flButtonPressed[i] · flButtonTime[i]
max{1,maxFlButtonTime}

Component s2 is the normalized time of how long passengers have been waiting for an elevator
to arrive. Passengers waiting for a longer amount of time receive a higher score. It should
encourage elevators to move towards passengers who have waited for a long time.

s3 = elButtonW · elButtonPressed[i]

Component s3 is a constant mask of the target floors from the passengers currently in the
elevator. It should encourage elevators to move towards destination floors.

s4 = elButtonW · elButtonTimeW · elButtonPressed[i] · elButtonTime[i]
max{1,maxElButtonTime}

Component s4 is the normalized time of how long passengers have been inside the elevator.
Passengers waiting for a longer amount of time receive a higher score. It should encourage
elevators to move towards floors that passengers have targeted for a long time.

s5 = competitorW ·
∑

j ̸=elIndex

#floors - distToOtherElevator[j]

Component s5 measures the distance between the elevators compared to the height of the
building. A higher value represents the elevators being closer together. Because s5 is in the
score function in the denominator, minimizing s5 yields a higher score. It should encourage
elevators to choose different targets and avoid spontaneous alignment.

s6 = (distanceW)distanceExponent · |currentFloor − i|

Component s6 is the distance between the elevator and the floor. s6 is in the score function in
the denominator, minimizing s6 yields a higher score. It should encourage elevators to prefer
closer targets.

3 Results
3.1 Policies

In this subchapter, we are focusing on some inefficiencies of already existing policies, in the
hope that we can learn from them. For that, we are going to benchmark the four introduced
policies, in the three scenarios with the two metrics average waiting time (AWT) and average
time to destination (ATTD). The average crowdedness (ACE) is a metric, which is also looked
at but in less detail. The curves defined by the three metrics - AWT (Fig. 3.1), ATTD (Fig.
A.3) and ACE (Fig. A.4) - follow the graph of the total people spawned in the entire building
(Fig. A.1) quite accurately, only deviating strongly in some special circumstances. The
introduced AWT and policies yield the graphs presented in figure 3.1.

The table 3.1 displays the values that achieve the maximum in each policy and scenario,
as indicated by the corresponding figure 3.1. It holds for all metrics (Fig. A.1 and Fig. A.2)
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Figure 3.1: Different policies in various scenarios, Average Waiting Time per hour

that the maximum is attained at almost the same time. In the shopping mall scenario, the
maximum is attained in [11, 12], whereas the residence building produces its maxima in [6, 7].
The only scenario where the extreme points are more distributed is in the rooftop bar scenario
where they can range from 18 to 22.

Policy shopping mal residence building rooftop bar
max value time max time max time

LOOK 74.75 12 80.29 6 97.07 19
SCAN 80.2 12 89.39 7 96.48 18
SSTF 99.24 12 121.72 6 441.48 19
FCFS 133.59 11 180.12 6 433.26 22
PWDP 46.52 11 57.46 7 48.94 21
PWDP (optimised) 47.19 11 54.47 7 48.51 21

Table 3.1: Collection of all maximal AWT values in the scenarios

The SCAN Policy (Fig. 3.1a and Fig. A.3a) and both PWDP Policies (Fig. A.2, Fig.
A.3e and Fig. A.3f) are the only algorithms which show strong volatilities. They are found
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in the shopping mall scenario from midnight to 5 a.m.

Figure 3.2 showcases the performance of the policies relative to each other. In the shop-
ping mall scenario, the SCAN Policy has the worst efficiency, when it comes to low-intensity
situations. However, when the intensity rises, it remains relatively stable, only to be outper-
formed by LOOK and PWDP. SCAN has the same tendencies in the rooftop bar example.
The FCFS policy gets outperformed by all other algorithms when the intensity peaks in the
shopping mall. However, in the rooftop bar scenario, the worst performance in the high in-
tensity is delivered by the SSTF Policy. Figure 3.3 showcases the overall improvements in
the optimisation of the PWDP Policy. The said changes are only seen in the high-intensity
scenario.
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Figure 3.2: AWT over time of each policy. Shopping mall scenario (left) and Rooftop bar
scenario (right).
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3.2 PWDP Optimisation

The PWDP Policy with all weights set to 1 already dwarfs all other analyzed policies, as
shown in Figure 3.2. While there isn’t much of a notable difference during low traffic, the
PWDP Policy inversely stays stable in high traffic.
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We optimized the model parameters using a random search algorithm with AWT as the
parameter to minimize. Over many iterations, we randomly perturbed the weights of the
model and the average waiting time of the new model was then compared to the current
model. The current model is replaced if a performance increase is recognized.

The model was initialized with all parameters set to 1. In Figure 3.4 we can see a
downward trend of the AWT in the first few iterations. The model then stabilizes at around
5 to 10 Percent improvement compared to the initial model (see gray area in Fig. 3.4).

3.2.1 Distance Weights

The distance parameter shows a reduction in weight of around 50%. This pattern is also
reproduced in the phase diagrams (Figure 3.5) of the Distance Weight compared with other
weights. They too set the optimal Distance Weight at 0.5, much less than any other parameter.
There is also an unequivocal degradation of the model for higher values.

3.2.2 Competitor Weights

The Competitor Weight parameter shows a clear increase in its base value, as seen in Fig-
ure 3.6. Increasing the weight by a large amount (Figure 3.6b) does not have a large negative
impact on the AWT.

3.2.3 Elevator Time Weight

Figure 3.4 also shows a decrease in the Elevator Time Weight, while the Floor Button Weight
inversely increases. This behavior is also reflected in their phase diagram (Figure 3.7a), where
too small values of the Floor Button Weight will break the policy but the Elevator Button
Time Weight stays relatively unaffected. In Figure 3.7b, the extreme values are cut off and
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we also see that the optimum correlation between these two parameters is off the diagonal,
biased towards the side of the Floor Button Weight.

4 Discussion
Generally, what is true for all comparisons, regardless of the policy or scenario, is that

ATTD is always higher than AWT. This is given by the fact that the time waiting, is contained
in the total travel time. Furthermore, the metric ACE also follows in almost all the cases the
distribution of the ATTD. To compare the ATTD and ACE please refer to the section A.2.3
and A.2.4 in the appendix. The only case where this does not hold is in the low-intensity
scenario, where a certain volatility comes into play. Since in the low-intensity scenario, the
average crowdedness is either zero, when the elevator is empty, or one, when a passenger is
transported, one can conclude that this difference in the initial low-intensity scenario comes
from the changing AWT and ATTD.

4.1 SCAN Policy

The SCAN policy is the simplest policy implemented in this project. Besides its simplicity, it
performs reasonably well, only being outperformed in high-intensity by its improved version,
in our project called LOOK policy, or the parametrized policy. However, the policy also in-
troduces volatility in low-intensity cases. For both metrics, the limited influx of passengers in
these regions renders the entire system reliant upon the arbitrary placement of individuals, a
factor that exerts a significantly greater influence in comparison. Consequently, a passenger
may emerge near the elevator, expediting the pickup process. Conversely, an unfavourable
scenario may transpire, in which the elevator must traverse the entire building before ulti-
mately reaching the passenger. Since ATTD has an inherently larger baseline - namely the
distance from spawn- to the target floor - it relativises the fluctuations, resulting in lower
volatility.

4.2 LOOK Policy

Compared to the SCAN Policy, the LOOK Policy is a bit harder to implement but comes
with some efficiency improvements. Besides the parametrised policy, it is the most capable
policy and most resilient, especially in high-intensity situations.

One small improvement comes in the low-intensity situation, where the policy can decide
to switch directions. This makes the algorithm less prone to random placements of passengers
and their targets, reducing the volatility. It slightly outperforms SCAN in high-intensity,which
showcases that changing directions looses significance with the increase of total amount of
passengers in a building.

4.3 FCFS Policy

The FCFS Policy follows a more complex algorithm and has the upper hand when it comes
to low-intensity scenarios. However, in the rooftop bar example, it more than quadruples the
average waiting time achieved by the LOOK Policy (Tab. 3.1). However, the average time to
destination is only tripled (Tab. A.1).
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Figure 3.5: Phase diagrams of Distance Weight compared to other weights.
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14 4.4. SSTF Policy

This inefficiency in the rooftop bar at 8 p.m., can be credited to the search pattern by
an empty elevator, which always looks for the closest floor. In this scenario and time, most
passengers occur on the upper floor, heading to the exit at the ground level. Thus an elevator
going from the top floor will be emptied when it reaches the lowest floor. Then, one other
passenger will be prioritized over the possibly many other passengers exiting the rooftop bar.
This can keep the elevator on the lower levels until at some point no other individuals are
close by or it gradually ascends, floor by floor. In both cases, the AWT, as well as ATTD,
will drastically increase.

4.4 SSTF Policy

This policy now fully schedules levels by prioritizing the target closest by. This approach
has shown to be quite stable in the shopping mall scenario as well as residence building (Fig.
3.1d), only closely missing the achieved metrics set by the LOOK, seen in figure 3.1b and
SCAN Policy, seen in figure 3.1a. However, the distance-avoiding approach has proven to be
counterproductive in the case of the rooftop bar, yielding an AWT of over 400 (Tab. 3.1).

The inefficiency in the rooftop bar at 8 p.m. can be credited to the search pattern by
an empty elevator, which always looks for the closest floor. In this scenario and time, most
passengers occur on the upper floor, heading to the exit at the ground level. This effect is
intensified by the new possibility of additional passengers, who can enter at any floor and
have higher precedence if they are headed to a floor close by. The FCFS Policy would address
requests by passengers with increasing time of demand, giving it an edge over the SSTF Policy.

4.4.1 Spontaneous Synchronous Behaviour

A phenomenon, that can occur in all introduced policies is spontaneous alignment. With a
reasonably chosen number of elevators, they can align at some point and then stay either
partially or fully aligned for a longer time. This effect jeopardizes the fine granularity offered
by multiple elevators, effectively reducing the system’s overall adaptivity. Since this project
only analysed systems in which all elevators have the same policy, it is a phenomenon, which
occurred with various scenarios and policies. Given that policy makes a deterministic choice,
for a given environment, the same policies will make the same decision. Thus, two elevators
on the same level will inevitably decide on the same action. This situation can occur, when
one elevator is already picking up passengers from one floor, while others are approaching,
effectively decreasing the distance between both elevators and thus increasing the chance of
taking the same action.

4.5 PWDP Policy

While the PWDP Policy repeatedly outperforms the other policies during high traffic, there
isn’t much of a notable difference during low traffic (Figure 3.2). The noisier data at off-peak
times can be explained through the higher amount of randomness involved. If there are next
to no travellers, it has a much higher impact on where a passenger spawns in relation to
a waiting elevator. Additionally, with only a single assignment the actual behaviour of the
elevator is an easily solved problem, without the need for any complicated policy.
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4.6 PWDP Optimisation

According to Figure 3.3, the optimization gives a slight edge over the initial PWDP Policy. As
seen in Figure 3.4 the main contributors towards this change are Distance Weights, Elevator
Time Weights and Competitor Weights.

4.6.1 Distance Weights

One explanation for the sharp decline in Distance Weights is that the elevators may get stuck
in their local environment and won’t be able to listen to requests from passengers far away.
Therefore, some floors would only seldomly be visited and passengers can stack up there.

4.6.2 Competitor Weights

The reason for the upsurge in the weight may be that increasing the Competitor Weight
inversely decreases the impact of Distance Weight, which has already been shown to be detri-
mental. Additionally, elevators trying to maximize their distance from each other counteract
the spontaneous synchronous behaviour mentioned in subsection 4.4.1.

4.6.3 Elevator Time Weight

One contribution to this pattern is the goal we optimized for. As we tried to minimize the
waiting time instead of the total time, it naturally became much more important to pick up
passengers waiting on a floor than to bring them to their destination. The Elevator Button
Time Weight parameter only indirectly impacts the model when the elevator gets too crowded
and no passengers fit in anymore.

5 Conclusion and Outlook
Amongst SCAN, LOOK, FCFS and SSTF. Both LOOK and SCAN are performing the

best in all metrics, despite being simpler to implement. Whereas LOOK is performing slightly
better. Amongst all policies, PWDP is performing better than the other policies in all sce-
narios. Although further improvements using the random search algorithm have been rather
marginal, we found certain parameters to be more influential than others. Mainly the com-
petitor weight and floor button weight. Others like elevator button time weight and, more
extremely, the distance weight have demonstrated diminished influence.
In future work, one could try to find more optimal parameters using other techniques less
prone to local minima. Moreover one could add the ability for passengers to indicate a target
floor, further improving the capabilities of the policies. Another change one could make is the
addition of random perturbations, simulating situations such as too many people blocking the
doorway or service personnel with specialised equipment occupying a greater portion of the
elevator capacity. Since our model is limited by a local approach, one can also implement a
global controller, which can orchestrate a set of elevators individually.
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A Appendix
A.1 Link to Project and Documentation

1. Project: https://github.com/Silvan-M/ElevatingEfficiency

2. Documentation: https://silvan-m.github.io/ElevatingEfficiency/index.html

A.2 Additional Plots

A.2.1 Absolute Spawning Curve
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Figure A.1: Absolute amount of passengers spawning in the entire building over time

A.2.2 Average Waiting Time
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Figure A.2: AWT over time of the initial (left) and optimised (right) PWDP Policy.

https://github.com/Silvan-M/ElevatingEfficiency
https://silvan-m.github.io/ElevatingEfficiency/index.html


Appendix A. Appendix 17

A.2.3 Average Time To Destination
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(a) SCAN Policy
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(b) LOOK Policy
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(c) FCFS Policy
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(d) SSTF Policy
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(e) PWDP Policy
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Figure A.3: Different policies in various scenarios, Average Time To Destination per hour



18 A.2. Additional Plots

A.2.4 Average Crowdedness
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(a) SCAN Policy
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(b) LOOK Policy
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(c) FCFS Policy
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(d) SSTF Policy
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(e) Initial PWDP Policy
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Figure A.4: Different policies in various scenarios, Average Crowdedness per hour
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A.3 Additional Tables

A.3.1 Average Time to Destination

Policy shopping mal residence building rooftop bar
max value time max time max time

LOOK 140.91 12 147.85 6 177.38 19
SCAN 148.56 12 175.23 7 175.23 18
SSTF 183.66 12 207.41 6 542.03 19
FCFS 245.83 11 272.42 6 506.87 22
PWDP 112.41 11 118.89 6 143.29 19
PWDP (optimised) 116.65 12 125.87 6 142.0 18

Table A.1: Collection of all maximal ATTD values in the scenarios

A.3.2 Average Crowdedness

Policy shopping mal residence building rooftop bar
max value time max time max time

LOOK 2.97 12 2.82 6 3.96 20
SCAN 3.09 12 2.86 6 3.73 20
SSTF 3.78 12 3.64 6 5.94 20
FCFS 5.42 12 4.05 6 4.47 20
PWDP 2.98 12 2.96 6 4.09 19
PWDP (optimised) 3.41 12 3.34 6 4.11 21

Table A.2: Collection of all maximal ACE values in the scenarios
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